Using Genetic Code Expansion for Protein Biochemical Studies
نویسندگان
چکیده
منابع مشابه
Metalloprotein design using genetic code expansion.
More than one third of all proteins are metalloproteins. They catalyze important reactions such as photosynthesis, nitrogen fixation and CO2 reduction. Metalloproteins such as the olfactory receptors also serve as highly elaborate sensors. Here we review recent developments in functional metalloprotein design using the genetic code expansion approach. We show that, through the site-specific inc...
متن کاملGenetic Code Expansion and Optoproteomics
Nature has invented photoreceptor proteins that are involved in sensing and response to light in living organisms. Genetic code expansion (GCE) technology has provided new tools to transform light insensitive proteins into novel photoreceptor proteins. It is achieved by the site-specific incorporation of unnatural amino acids (Uaas) that carry light sensitive moieties serving as "pigments" that...
متن کاملUsing the Genetic Code Wisdom for Recognizing Protein Coding Sequences
We have elaborated a new method of recognizing protein coding sequences in genomic sequences. The method is exploiting a specific way of genetic code degeneration and relations between mutational pressure and selection pressure shaping the amino acid usage in the proteomes. It is based on analyses of correlations in nucleotide occurrence separately in the first, the second and the third putativ...
متن کاملExpanding the genetic code for biological studies.
Using an orthogonal tRNA-synthetase pair, unnatural amino acids can be genetically encoded with high efficiency and fidelity, and over 40 unnatural amino acids have been site-specifically incorporated into proteins in Escherichia coli, yeast, or mammalian cells. Novel chemical or physical properties embodied in these amino acids enable new means for tailored manipulation of proteins. This revie...
متن کاملCarbon source-dependent expansion of the genetic code in bacteria.
Despite the fact that the genetic code is known to vary between organisms in rare cases, it is believed that in the lifetime of a single cell the code is stable. We found Acetohalobium arabaticum cells grown on pyruvate genetically encode 20 amino acids, but in the presence of trimethylamine (TMA), A. arabaticum dynamically expands its genetic code to 21 amino acids including pyrrolysine (Pyl)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Bioengineering and Biotechnology
سال: 2020
ISSN: 2296-4185
DOI: 10.3389/fbioe.2020.598577